Characterization of Nonjunctional Hemichannels in Caterpillar Cells
نویسندگان
چکیده
Recent studies have demonstrated that hemichannels, which form gap junctions when paired from apposing cells, may serve additional roles when unpaired including cell adhesion and paracrine communication. Hemichannels in mammals are formed by connexins or pannexins, while in insects they are formed by pannexin homologues termed innexins. The formation of functional gap junctions by insect innexins has been established, although their ability to form functional nonjunctional hemichannels has not been reported. Here the characteristics of nonjunctional hemichannels were examined in three lepidopteran cell types, two cell lines (High Five and Sf9) and explanted hemocytes from Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Selective fluorescent dye uptake by hemichannels was observed in a significant minority of cells, using fluorescence microscopy and flow cytometry. Carbenoxelone, an inhibitor of mammalian junctions, disrupted dye uptake, while flufenamic acid and mefloquine did not. The presence of Ca(2+) and Mg(2+) in the media increased hemichannel activity. Additionally, lipopolysaccharide, a stimulator of immune activity in lepidopterans, decreased dye uptake. These results demonstrate for the first time the activity of nonjunctional hemichannels in insect cells, as well as pharmacological tools to manipulate them. These results will facilitate the further examination of the role of innexins and nonjunctional hemichannels in insect cell biology, including paracrine signaling, and comparative studies of mammalian pannexins and insect innexins.
منابع مشابه
Biophysical Properties of Connexin-45 Gap Junction Hemichannels Studied in Vertebrate Cells
Human HeLa cells transfected with mouse Cx45 and rat RIN cells transfected with chicken Cx45 were used to study the electrical and permeability properties of Cx45 gap junction hemichannels. With no extracellular Ca(2+), whole-cell recording revealed currents arising from hemichannels in both transfected cell lines. Multichannel currents showed a time-dependent activation or deactivation sensiti...
متن کاملConnexin43 Hemichannel-Mediated Regulation of Connexin43
BACKGROUND Many signaling molecules and pathways that regulate gap junctions (GJs) protein expression and function are, in fact, also controlled by GJs. We, therefore, speculated an existence of the GJ channel-mediated self-regulation of GJs. Using a cell culture model in which nonjunctional connexin43 (Cx43) hemichannels were activated by cadmium (Cd(2+)), we tested this hypothesis. PRINCIPA...
متن کاملFunctional connexin "hemichannels": a critical appraisal.
"Hemichannels" are defined as the halves of gap junction channels (also termed connexons) that are contributed by one cell; "hemichannels" are considered to be functional if they are open in nonjunctional membranes in the absence of pairing with partners from adjacent cells. Several recent reviews have summarized the blossoming literature regarding functional "hemichannels", in some cases encyc...
متن کاملProperties of connexin 46 hemichannels in dissociated lens fiber cells.
PURPOSE To characterize the properties of connexin 46 hemichannels in differentiating fiber cells isolated from mouse lenses. METHODS Differentiating fiber cells were isolated from mouse lenses using collagenase. Cellular localization of connexin 50 (Cx50) and connexin 46 (Cx46) was assessed by immunofluorescence. Membrane currents were recorded using whole cell patch clamping. Dye uptake was...
متن کاملPhysiological Role of Gap-junctional Hemichannels: Extracellular Calcium-dependent Isosmotic Volume Regulation
Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM),...
متن کامل